Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Metabolism ; 151: 155740, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995805

RESUMO

BACKGROUND & AIMS: Dysbiosis contributes to alcohol-associated liver disease (ALD); however, the precise mechanisms remain elusive. Given the critical role of the gut microbiota in ammonia production, we herein aim to investigate whether and how gut-derived ammonia contributes to ALD. METHODS: Blood samples were collected from human subjects with/without alcohol drinking. Mice were exposed to the Lieber-DeCarli isocaloric control or ethanol-containing diets with and without rifaximin (a nonabsorbable antibiotic clinically used for lowering gut ammonia production) supplementation for five weeks. Both in vitro (NH4Cl exposure of AML12 hepatocytes) and in vivo (urease administration for 5 days in mice) hyperammonemia models were employed. RNA sequencing and fecal amplicon sequencing were performed. Ammonia and triglyceride concentrations were measured. The gene and protein expression of enzymes involved in multiple pathways were measured. RESULTS: Chronic alcohol consumption causes hyperammonemia in both mice and human subjects. In healthy livers and hepatocytes, ammonia exposure upregulates the expression of urea cycle genes, elevates hepatic de novo lipogenesis (DNL), and increases fat accumulation. Intriguingly, ammonia promotes ethanol catabolism and acetyl-CoA formation, which, together with ammonia, synergistically facilitates intracellular fat accumulation in hepatocytes. Mechanistic investigations uncovered that ATF4 activation, as a result of ER stress induction and general control nonderepressible 2 activation, plays a central role in ammonia-provoked DNL elevation. Rifaximin ameliorates ALD pathologies in mice, concomitant with blunted hepatic ER stress induction, ATF4 activation, and DNL activation. CONCLUSIONS: An overproduction of ammonia by gut microbiota, synergistically interacting with ethanol, is a significant contributor to ALD pathologies.


Assuntos
Amônia , Fígado Gorduroso , Hiperamonemia , Hepatopatias Alcoólicas , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Amônia/efeitos adversos , Amônia/metabolismo , Etanol/efeitos adversos , Etanol/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Hiperamonemia/complicações , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Lipogênese , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Camundongos Endogâmicos C57BL , Rifaximina/farmacologia
2.
Cell Mol Life Sci ; 80(4): 90, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922433

RESUMO

Patients with liver cirrhosis show hyperammonemia and peripheral inflammation and may show hepatic encephalopathy with cognitive impairment, reproduced by rats with chronic hyperammonemia. Peripheral inflammation induces neuroinflammation in hippocampus of hyperammonemic rats, altering neurotransmission and leading to cognitive impairment. Extracellular vesicles (EVs) may transmit pathological effects from the periphery to the brain. We hypothesized that EVs from peripheral blood would contribute to cognitive alterations in hyperammonemic rats. The aims were to assess whether EVs from plasma of hyperammonemic rats (HA-EVs) induce cognitive impairment and to identify the underlying mechanisms. Injection of HA-EVs impaired learning and memory, induced microglia and astrocytes activation and increased TNFα and IL-1ß. Ex vivo incubation of hippocampal slices from control rats with HA-EVs reproduced these alterations. HA-EVs increased membrane expression of TNFR1, reduced membrane expression of TGFßR2 and Smad7 and IκBα levels and increased IκBα phosphorylation. This led to increased activation of NF-κB and IL-1ß production, altering membrane expression of NR2B, GluA1 and GluA2 subunits, which would be responsible for cognitive impairment. All these effects of HA-EVs were prevented by blocking TNFα, indicating that they were mediated by enhanced activation of TNFR1 by TNFα. We show that these mechanisms are very different from those leading to motor incoordination, which is due to altered GABAergic neurotransmission in cerebellum. This demonstrates that peripheral EVs play a key role in the transmission of peripheral alterations to the brain in hyperammonemia and hepatic encephalopathy, inducing neuroinflammation and altering neurotransmission in hippocampus, which in turn is responsible for the cognitive deficits.


Assuntos
Vesículas Extracelulares , Encefalopatia Hepática , Hiperamonemia , Ratos , Animais , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Doenças Neuroinflamatórias , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Inflamação/metabolismo , Cognição , Vesículas Extracelulares/metabolismo , Hipocampo/metabolismo
3.
Front Immunol ; 13: 921947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911759

RESUMO

Hyperammonemia plays a main role in the neurological impairment in cirrhotic patients with hepatic encephalopathy. Rats with chronic hyperammonemia reproduce the motor incoordination of patients with minimal hepatic encephalopathy, which is due to enhanced GABAergic neurotransmission in cerebellum as a consequence of neuroinflammation. Extracellular vesicles (EVs) could play a key role in the transmission of peripheral alterations to the brain to induce neuroinflammation and neurological impairment in hyperammonemia and hepatic encephalopathy. EVs from plasma of hyperammonemic rats (HA-EVs) injected to normal rats induce neuroinflammation and motor incoordination, but the underlying mechanisms remain unclear. The aim of this work was to advance in the understanding of these mechanisms. To do this we used an ex vivo system. Cerebellar slices from normal rats were treated ex vivo with HA-EVs. The aims were: 1) assess if HA-EVs induce microglia and astrocytes activation and neuroinflammation in cerebellar slices of normal rats, 2) assess if this is associated with activation of the TNFR1-NF-kB-glutaminase-GAT3 pathway, 3) assess if the TNFR1-CCL2-BDNF-TrkB pathway is activated by HA-EVs and 4) assess if the increased TNFα levels in HA-EVs are responsible for the above effects and if they are prevented by blocking the action of TNFα. Our results show that ex vivo treatment of cerebellar slices from control rats with extracellular vesicles from hyperammonemic rats induce glial activation, neuroinflammation and enhance GABAergic neurotransmission, reproducing the effects induced by hyperammonemia in vivo. Moreover, we identify in detail key underlying mechanisms. HA-EVs induce the activation of both the TNFR1-CCL2-BDNF-TrkB-KCC2 pathway and the TNFR1-NF-kB-glutaminase-GAT3 pathway. Activation of these pathways enhances GABAergic neurotransmission in cerebellum, which is responsible for the induction of motor incoordination by HA-EVs. The data also show that the increased levels of TNFα in HA-EVs are responsible for the above effects and that the activation of both pathways is prevented by blocking the action of TNFα. This opens new therapeutic options to improve motor incoordination in hyperammonemia and also in cirrhotic patients with hepatic encephalopathy and likely in other pathologies in which altered cargo of extracellular vesicles contribute to the propagation of the pathology.


Assuntos
Vesículas Extracelulares , Encefalopatia Hepática , Hiperamonemia , Animais , Ataxia/complicações , Ataxia/metabolismo , Ataxia/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Vesículas Extracelulares/metabolismo , Glutaminase/metabolismo , Encefalopatia Hepática/complicações , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Hiperamonemia/complicações , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Cirrose Hepática/patologia , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Ratos , Ratos Wistar , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Metab Brain Dis ; 36(7): 2169-2172, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34427841

RESUMO

Biallelic pathogenic variants in the neuroblastoma amplified sequence (NBAS) gene were firstly (2015) identified as a cause of fever-triggered recurrent acute liver failure (RALF). Since then, some patients with NBAS deficiency presenting with neurologic features, including a motor delay, intellectual disability, muscular hypotonia and a mild brain atrophy, have been reported. Here, we describe a case of pediatric patient diagnosed with NBAS deficiency due to a homozygous c.2809C > G, p.(Pro937Ala) variant presenting with RALF with severe hyperammonemia, acquired microcephaly and progressive brain atrophy. Not reported in the literature findings include severe hyperammonemia during ALF episode, and neurologic features in the form of acquired progressive microcephaly with brain atrophy. The latter raises the hypothesis about a primary neurologic phenotype in NBAS deficiency.


Assuntos
Hiperamonemia , Falência Hepática Aguda , Microcefalia , Neuroblastoma , Atrofia/genética , Atrofia/patologia , Encéfalo/metabolismo , Criança , Humanos , Hiperamonemia/genética , Hiperamonemia/patologia , Falência Hepática Aguda/genética , Falência Hepática Aguda/patologia , Microcefalia/complicações , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
5.
Am J Med Genet A ; 185(10): 2976-2985, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34155781

RESUMO

Reduced muscle tone, muscle weakness, and physical fatigue can impact considerably on quality of life for children with neurofibromatosis type 1 (NF1). Human muscle biopsies and mouse models of NF1 deficiency in muscle show intramyocellular lipid accumulation, and preclinical data have indicated that L-carnitine supplementation can ameliorate this phenotype. The aim of this study is to examine whether daily L-carnitine supplementation is safe and feasible, and will improve muscle strength and reduce fatigue in children with NF1. A 12-week Phase 2a trial was conducted using 1000 mg daily oral levocarnitine tartrate supplementation. Recruited children were between 8 and 12 years old with a clinical diagnosis of NF1, history of muscle weakness and fatigue, and naïve to L-carnitine. Primary outcomes were safety (self-reporting, biochemical testing) and compliance. Secondary outcomes included plasma acylcarnitine profiles, functional measures (muscle strength, long jump, handwriting speed, 6-minute-walk test [6MWT]), and parent-reported questionnaires (PedsQL™, CBCL/6-18). Six children completed the trial with no self-reported adverse events. Biochemical tests for kidney and liver function were normal, and the average compliance was 95%. Plasma acylcarnitine levels were low, but within a range not clinically linked to carnitine deficiency. For strength measures, there was a mean 53% increase in dorsiflexion strength (95% confidence interval [CI] 8.89-60.75; p = 0.02) and mean 66% increase in plantarflexion strength (95% CI 12.99-134.1; p = 0.03). In terms of muscle performance, there was a mean 10% increase in long jump distance (95% CI 2.97-16.03; p = 0.01) and 6MWT distance (95% CI 5.88-75.45; p = 0.03). Comparison with the 1000 Norms Project data showed a significant improvement in Z-score for all of these measures. Parent reports showed no negative impact on quality of life, and the perceived benefits led to the majority of individuals remaining on L-carnitine after the study. Twelve weeks of L-carnitine supplementation is safe and feasible in children with NF1, and a Phase 3 trial should confirm the efficacy of treatment.


Assuntos
Carnitina/administração & dosagem , Fadiga/dietoterapia , Debilidade Muscular/dietoterapia , Neurofibromatose 1/dietoterapia , Cardiomiopatias/dietoterapia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Carnitina/efeitos adversos , Carnitina/deficiência , Carnitina/metabolismo , Criança , Suplementos Nutricionais/efeitos adversos , Fadiga/genética , Fadiga/patologia , Feminino , Humanos , Hiperamonemia/dietoterapia , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Masculino , Força Muscular/efeitos dos fármacos , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Doenças Musculares/dietoterapia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Neurofibromatose 1/complicações , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Qualidade de Vida
6.
Mol Genet Metab ; 133(2): 148-156, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846069

RESUMO

BACKGROUND: Urea cycle disorders (UCDs) are among the most common inborn errors of liver metabolism. As therapies for hyperammonemia associated with urea cycle dysfunction have improved, chronic complications, such as liver disease, have become increasingly apparent in individuals with UCDs. Liver disease in UCDs may be associated with hepatic inflammation, hepatic fibrosis, portal hypertension, liver cancer and even liver failure. However, except for monitoring serum aminotransferases, there are no clear guidelines for screening and/or monitoring individuals with UCDs for liver disease. Thus, we systematically evaluated the potential utility of several non-invasive biomarkers for liver fibrosis in UCDs. METHODS: We evaluated grey-scale ultrasonography, liver stiffness obtained from shear wave elastography (SWE), and various serum biomarkers for hepatic fibrosis and necroinflammation, in a cohort of 28 children and adults with various UCDs. RESULTS: Overall, we demonstrate a high burden of liver disease in our participants with 46% of participants having abnormal grey-scale ultrasound pattern of the liver parenchyma, and 52% of individuals having increased liver stiffness. The analysis of serum biomarkers revealed that 32% of participants had elevated FibroTest™ score, a marker for hepatic fibrosis, and 25% of participants had increased ActiTest™ score, a marker for necroinflammation. Interestingly, liver stiffness did not correlate with ultrasound appearance or FibroTest™. CONCLUSION: Overall, our results demonstrate the high overall burden of liver disease in UCDs and highlights the need for further studies exploring new tools for identifying and monitoring individuals with UCDs who are at risk for this complication. TRIAL REGISTRATION: This study has been registered in ClinicalTrials.gov (NCT03721367).


Assuntos
Argininossuccinato Liase/sangue , Doenças Genéticas Inatas/sangue , Cirrose Hepática/sangue , Hepatopatias/sangue , Distúrbios Congênitos do Ciclo da Ureia/sangue , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Técnicas de Imagem por Elasticidade , Feminino , Doenças Genéticas Inatas/diagnóstico por imagem , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Humanos , Hiperamonemia/sangue , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Erros Inatos do Metabolismo/genética , Pessoa de Meia-Idade , Ultrassonografia , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia , Adulto Jovem
7.
Sci Rep ; 11(1): 3580, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574402

RESUMO

The urea cycle protects the central nervous system from ammonia toxicity by converting ammonia to urea. N-acetylglutamate synthase (NAGS) catalyzes formation of N-acetylglutamate, an essential allosteric activator of carbamylphosphate synthetase 1. Enzymatic activity of mammalian NAGS doubles in the presence of L-arginine, but the physiological significance of NAGS activation by L-arginine has been unknown. The NAGS knockout (Nags-/-) mouse is an animal model of inducible hyperammonemia, which develops hyperammonemia without N-carbamylglutamate and L-citrulline supplementation (NCG + Cit). We used adeno associated virus (AAV) based gene transfer to correct NAGS deficiency in the Nags-/- mice, established the dose of the vector needed to rescue Nags-/- mice from hyperammonemia and measured expression levels of Nags mRNA and NAGS protein in the livers of rescued animals. This methodology was used to investigate the effect of L-arginine on ureagenesis in vivo by treating Nags-/- mice with AAV vectors encoding either wild-type or E354A mutant mouse NAGS (mNAGS), which is not activated by L-arginine. The Nags-/- mice expressing E354A mNAGS were viable but had elevated plasma ammonia concentration despite similar levels of the E354A and wild-type mNAGS proteins. The corresponding mutation in human NAGS (NP_694551.1:p.E360D) that abolishes binding and activation by L-arginine was identified in a patient with NAGS deficiency. Our results show that NAGS deficiency can be rescued by gene therapy, and suggest that L-arginine binding to the NAGS enzyme is essential for normal ureagenesis.


Assuntos
Aminoácido N-Acetiltransferase/genética , Técnicas de Transferência de Genes , Hiperamonemia/genética , Distúrbios Congênitos do Ciclo da Ureia/genética , Aminoácido N-Acetiltransferase/metabolismo , Animais , Arginina/metabolismo , Arginina/farmacologia , Citrulina/metabolismo , Citrulina/farmacologia , Dependovirus/genética , Modelos Animais de Doenças , Glutamatos/metabolismo , Glutamatos/farmacologia , Humanos , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Hiperamonemia/terapia , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/metabolismo , Distúrbios Congênitos do Ciclo da Ureia/patologia , Distúrbios Congênitos do Ciclo da Ureia/terapia
8.
J Pediatr Hematol Oncol ; 42(2): e114-e116, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789458

RESUMO

Idiopathic hyperammonemia is a rare, poorly understood, and often lethal condition that has been described in immunocompromised patients. This report describes an immunocompromised patient with acute myelogenous leukemia who developed persistent hyperammonemia up to 705 µmol/L (normal, 0 to 47 µmol/L) refractory to multiple different therapies. However, after beginning azithromycin and then doxycycline therapy for Ureaplasma species infection, the patient showed immediate and sustained clinical improvement and resolution of ammonia levels. Recognizing disseminated Ureaplasma species infection as a potential cause of idiopathic hyperammonemia, an unexplained, often fatal condition in immunocompromised patients, and empirically treating for this infection could potentially be lifesaving.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Hiperamonemia/etiologia , Hospedeiro Imunocomprometido/efeitos dos fármacos , Quimioterapia de Indução/efeitos adversos , Leucemia Mieloide Aguda/tratamento farmacológico , Infecções por Ureaplasma/complicações , Ureaplasma/efeitos dos fármacos , Adolescente , Antibacterianos/uso terapêutico , Doxiciclina/uso terapêutico , Feminino , Humanos , Hiperamonemia/tratamento farmacológico , Hiperamonemia/patologia , Leucemia Mieloide Aguda/microbiologia , Leucemia Mieloide Aguda/patologia , Prognóstico , Infecções por Ureaplasma/induzido quimicamente , Infecções por Ureaplasma/microbiologia
9.
Stem Cell Rev Rep ; 16(1): 186-197, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792768

RESUMO

Previous studies have shown that human liver stem-like cells (HLSCs) may undergo differentiation in vitro into urea producing hepatocytes and in vivo may sustain liver function in models of experimentally induced acute liver injury. The aim of this study was to assess the safety of HLSCs intrahepatic administration in inherited neonatal-onset hyperammonemia. The study was approved by the Agenzia Italiana del Farmaco on favorable opinion of the Italian Institute of Health as an open-label, prospective, uncontrolled, monocentric Phase I study (HLSC 01-11, EudraCT-No. 2012-002120-33). Three patients affected by argininosuccinic aciduria (patient 1) and methylmalonic acidemia (patients 2 and 3) and included in the liver transplantation list were enrolled. In all patients, HLSCs were administered by percutaneous intrahepatic injections (once a week for two consecutive weeks) within the first months of life. The first patient received 125,000 HLSCs x gram of liver/dose while the other two patients received twice this dose. No immunosuppression was administered since HLSCs possess immunomodulatory activities. None of the patients experienced infections, hyperammonemia decompensation, or other adverse events during the whole observation period. No donor specific antibodies (DSA) against HLSCs were detected. Patients were metabolic stable despite an increase (~30%) in protein intake. Two patients underwent liver transplantation after 19 and 11 months respectively, and after explantation, the native livers showed no histological alterations. In conclusion, percutaneous intrahepatic administration of HLSCs was safe in newborn with inherited neonatal-onset hyperammonemia. These data pave the way for Phase II studies in selected inherited and acquired liver disorders.


Assuntos
Hiperamonemia/terapia , Transplante de Fígado , Fígado/metabolismo , Erros Inatos do Metabolismo/terapia , Transplante de Células-Tronco , Idade de Início , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Amônia/metabolismo , Acidúria Argininossuccínica/metabolismo , Acidúria Argininossuccínica/patologia , Acidúria Argininossuccínica/terapia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Recém-Nascido , Fígado/crescimento & desenvolvimento , Fígado/patologia , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Células-Tronco/metabolismo , Ureia/metabolismo
10.
J Inherit Metab Dis ; 42(6): 1128-1135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30724386

RESUMO

The urea cycle and glutamine synthetase (GS) are the two main pathways for waste nitrogen removal and their deficiency results in hyperammonemia. Here, we investigated the efficacy of liver-specific GS overexpression for therapy of hyperammonemia. To achieve hepatic GS overexpression, we generated a helper-dependent adenoviral (HDAd) vector expressing the murine GS under the control of a liver-specific expression cassette (HDAd-GS). Compared to mice injected with a control vector expressing an unrelated reporter gene (HDAd-alpha-fetoprotein), wild-type mice with increased hepatic GS showed reduced blood ammonia levels and a concomitant increase of blood glutamine after intraperitoneal injections of ammonium chloride, whereas blood urea was unaffected. Moreover, injection of HDAd-GS reduced blood ammonia levels at baseline and protected against acute hyperammonemia following ammonia challenge in a mouse model with conditional hepatic deficiency of carbamoyl phosphate synthetase 1 (Cps1), the initial and rate-limiting step of ureagenesis. In summary, we found that upregulation of hepatic GS reduced hyperammonemia in wild-type and Cps1-deficient mice, thus confirming a key role of GS in ammonia detoxification. These results suggest that hepatic GS augmentation therapy has potential for treatment of both primary and secondary forms of hyperammonemia.


Assuntos
Amônia/metabolismo , Terapia Genética/métodos , Glutamato-Amônia Ligase/genética , Hiperamonemia/genética , Hiperamonemia/terapia , Fígado/metabolismo , Amônia/toxicidade , Animais , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Glutamato-Amônia Ligase/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos/genética
11.
In Vivo ; 33(2): 563-565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804142

RESUMO

BACKGROUND/AIM: Recent advances in chemotherapy have increased the possibility of conversion hepatectomy for patients with initially unresectable liver metastases. Although long-term chemotherapy and subsequent extensive hepatectomy are becoming more common, the toxicities of such chemotherapies are unclear. PATIENTS AND METHODS: We present a case report of a patient with metastatic colorectal cancer who developed severe encephalopathy with lactic acidosis and hyperammonaemia caused by 5-fluorouracil-based chemotherapy. Administration of vitamin B1 and continuous haemodiafiltration rapidly improved the patient's symptoms. CONCLUSION: Intensive treatment of metastatic colorectal cancer patients with 5-fluorouracil can induce rare adverse events.


Assuntos
Acidose Láctica/patologia , Encefalopatias/patologia , Neoplasias Colorretais/tratamento farmacológico , Hiperamonemia/patologia , Acidose Láctica/induzido quimicamente , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Encefalopatias/induzido quimicamente , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Neoplasias Colorretais/complicações , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Feminino , Fluoruracila/efeitos adversos , Hepatectomia , Humanos , Hiperamonemia/induzido quimicamente , Leucovorina/efeitos adversos , Metástase Neoplásica , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão/efeitos adversos
12.
Chem Biol Interact ; 299: 102-110, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508503

RESUMO

BACKGROUND: Liver injury is a serious threat for human health and life. Toll-like receptor 5 (TLR5) has reported to be a vital mediator in flagellin or tetrachloride (CCl4)-induced liver injury. However, the roles and etiology of TLR5 in hyperammonaemia (HA)-induced liver injury are poor defined. METHODS: HA rats were generated by intragastric administration using ammonium chloride solution. Liver status was assessed by haematoxylin and eosin (H&E) staining and measuring serum levels of liver injury markers. Immunohistochemistry (IHC) assay was used to visualize protein expression in tissues. Apoptotic index in tissues was determined by TUNEL assay. RT-qPCR assay was employed to test mRNA expression. Oxidative stress responses was assessed by detecting levels of reactive oxygen species (ROS) and related indicators. NF-κB activity was examined by TransAM NF-κB colorimetric kit. RESULTS: TLR5 was highly expressed in liver tissues of HA rats. TLR5 knockdown ameliorated HA-induced liver injury by inhibiting liver cell apoptosis. TLR5 depletion inhibited HA-induced pro-inflammatory cytokine expression in liver tissues, but had no effect on the infiltration of T and macrophage cells into liver tissues. TLR5 silencing impaired HA-induced oxidative stress responses in hepatocytes, but not in hepatic stellate cells (HSCs). TLR5 downregulation inhibited HA-induced activation on TLR5/NF-κB and TLR5/MAPK signaling pathways. CONCLUSION: TLR5 silencing reduced HA-induced liver injury by inhibiting hepatocyte apoptosis, oxidative stress and inflammation responses via inactivating NF-κB and MAPK signals, deepening our understanding on the molecular mechanism of HA-induced liver injury and providing a potential therapeutic target for alleviating liver injury.


Assuntos
Citocinas/metabolismo , Hiperamonemia/patologia , Hepatopatias/patologia , Estresse Oxidativo , Transdução de Sinais , Receptor 5 Toll-Like/genética , Alanina Transaminase/sangue , Cloreto de Amônio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hiperamonemia/complicações , Hiperamonemia/veterinária , Fígado/metabolismo , Fígado/patologia , Hepatopatias/etiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 5 Toll-Like/deficiência
13.
Anticancer Drugs ; 30(3): 313-317, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30531368

RESUMO

For several decades, 5-Fluorouracil (5-FU) has been the backbone of many chemotherapy regimens for various tumor types. Its most common side effects are gastrointestinal disorders, mucositis, myelosuppression, hand-foot syndrome, and rarely cardiac toxicity. More rarely, 5-FU infusion can induce hyperammonemic encephalopathy. 5-FU toxicities can be worsened by complete or partial genetic and/or phenotypic dihydropyrimidine dehydrogenase deficiency. Here, we report the case of a patient who initially developed a 5-FU-induced hyperammonemic encephalopathy after receiving FOLFIRINOX (oxaliplatin, irinotecan, folinic acid, and 5-FU) chemotherapy with bevacizumab to treat a metastatic gastrointestinal cancer of unknown primary. Thereafter, the patient was rechallenged successfully by the same chemotherapy regimen (FOLFIRINOX) for more than 6 months with a protocol consisting in a free protein diet, and administration of ammonium chelators, and Krebs and urea cycle intermediates, to prevent further hyperammonemia. We also present a review of the literature on 5-FU rechallenge after 5-FU-induced hyperammonemic encephalopathy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Encefalopatias/tratamento farmacológico , Fluoruracila/efeitos adversos , Neoplasias Gastrointestinais/tratamento farmacológico , Hiperamonemia/tratamento farmacológico , Neoplasias Primárias Desconhecidas/tratamento farmacológico , Retratamento/estatística & dados numéricos , Adulto , Bevacizumab/administração & dosagem , Encefalopatias/induzido quimicamente , Encefalopatias/patologia , Feminino , Fluoruracila/administração & dosagem , Neoplasias Gastrointestinais/patologia , Humanos , Hiperamonemia/induzido quimicamente , Hiperamonemia/patologia , Irinotecano/administração & dosagem , Leucovorina/administração & dosagem , Neoplasias Primárias Desconhecidas/patologia , Oxaliplatina/administração & dosagem , Prognóstico
14.
Mol Genet Metab ; 125(3): 241-250, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253962

RESUMO

Argininosuccinic aciduria (ASA) is the second most common genetic disorder affecting the urea cycle. The disease is caused by deleterious mutations in the gene encoding argininosuccinate lyase (ASL); total loss of ASL activity results in severe neonatal onset of the disease, which is characterized by hyperammonemia within a few days of birth that can rapidly progress to coma and death. The long-term complications of ASA, such as hypertension and neurocognitive deficits, appear to be resistant to the current treatment options of dietary restriction, arginine supplementation, and nitrogen scavenging drugs. Treatment-resistant disease is currently being managed by orthotopic liver transplant, which shows variable improvement and requires lifetime immunosuppression. Here, we developed a gene therapy strategy for ASA aimed at alleviating the symptoms associated with urea cycle disruption by providing stable expression of ASL protein in the liver. We designed a codon-optimized human ASL gene packaged within adeno-associated virus serotype 8 (AAV8) as a vector for targeted delivery to the liver. To evaluate the therapeutic efficacy of this approach, we utilized a murine hypomorphic model of ASA. Neonatal administration of AAV8 via the temporal facial vein extended survival in ASA hypomorphic mice, although not to wild-type levels. Intravenous injection into adolescent hypomorphic mice led to increased survival and body weight and correction of metabolites associated with the disease. Our results demonstrate that AAV8 gene therapy is a viable approach for the treatment of ASA.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/terapia , Terapia Genética , Hiperamonemia/terapia , Animais , Argininossuccinato Liase/administração & dosagem , Acidúria Argininossuccínica/genética , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Hiperamonemia/genética , Hiperamonemia/patologia , Camundongos , Ureia/metabolismo
15.
Toxicol Lett ; 295: 237-248, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30008432

RESUMO

Hyperammonemia is a common finding in patients with methylmalonic acidemia. However, its contribution to methylmalonate (MMA)-induced neurotoxicity is poorly understood. The aim of this study was evaluate whether an acute metabolic damage to brain during the neonatal period may disrupt cerebral development, leading to neurodevelopmental disorders, as memory deficit. Mice received a single intracerebroventricular dose of MMA and/or NH4Cl, administered 12 hs after birth. The maze tests showed that MMA and NH4Cl injected animals (21 and 40 days old) exhibited deficit in the working memory test, but not in the reference memory test. Furthermore, MMA and NH4Cl increased the levels of 2',7'-dichlorofluorescein-diacetate (DCF), TNF-α, IL-1ß in the cortex, hippocampus and striatum of mice. MMA and NH4Cl also increased glial proliferation in all structures. Since the treatment of MMA and ammonia increased cytokines levels, we suggested that it might be a consequence of the glial activation induced by the acid and ammonia, leading to delay in the developing brain and contributing to behavioral alterations. However, this hypothesis is speculative in nature and more studies are needed to clarify this possibility.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Amônia/metabolismo , Encéfalo/metabolismo , Hiperamonemia/metabolismo , Neuroglia/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Cloreto de Amônio , Animais , Comportamento Animal , Encéfalo/patologia , Encéfalo/fisiopatologia , Proliferação de Células , Modelos Animais de Doenças , Fluoresceínas/metabolismo , Hiperamonemia/induzido quimicamente , Hiperamonemia/patologia , Hiperamonemia/psicologia , Interleucina-1beta/metabolismo , Masculino , Malonatos , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Memória de Curto Prazo , Camundongos , Neuroglia/patologia , Compostos de Amônio Quaternário , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
16.
Mol Genet Metab ; 124(4): 243-253, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29801986

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) is a urea cycle enzyme that forms carbamoyl phosphate from bicarbonate, ammonia and ATP. Bi-allelic mutations of the CPS1 gene result in a urea cycle disorder presenting with hyperammonemia, often with reduced citrulline, and without orotic aciduria. CPS1 deficiency is particularly challenging to treat and lack of early recognition typically results in early neonatal death. Therapeutic interventions have limited efficacy and most patients develop long-term neurologic sequelae. Using transgenic techniques, we generated a conditional Cps1 knockout mouse. By loxP/Cre recombinase technology, deletion of the Cps1 locus was achieved in adult transgenic animals using a Cre recombinase-expressing adeno-associated viral vector. Within four weeks from vector injection, all animals developed hyperammonemia without orotic aciduria and died. Minimal CPS1 protein was detectable in livers. To investigate the efficacy of gene therapy for CPS deficiency following knock-down of hepatic endogenous CPS1 expression, we injected these mice with a helper-dependent adenoviral vector (HDAd) expressing the large murine CPS1 cDNA under control of the phosphoenolpyruvate carboxykinase promoter. Liver-directed HDAd-mediated gene therapy resulted in survival, normalization of plasma ammonia and glutamine, and 13% of normal Cps1 expression. A gender difference in survival suggests that female mice may require higher hepatic CPS1 expression. We conclude that this conditional murine model recapitulates the clinical and biochemical phenotype detected in human patients with CPS1 deficiency and will be useful to investigate ammonia-mediated neurotoxicity and for the development of cell- and gene-based therapeutic approaches.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Terapia Genética , Hiperamonemia/terapia , Amônia/metabolismo , Animais , Carbamoil-Fosfato Sintase (Amônia)/uso terapêutico , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Carbamoil-Fosfato/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Glutamina/metabolismo , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Mutação , Orotato Fosforribosiltransferase/deficiência , Orotato Fosforribosiltransferase/genética , Orotidina-5'-Fosfato Descarboxilase/deficiência , Orotidina-5'-Fosfato Descarboxilase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/patologia
17.
Metab Brain Dis ; 32(6): 2073-2083, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28875419

RESUMO

Lactulose is a nonabsorbable disaccharide commonly used in clinical practice to treat hepatic encephalopathy. However, its effects on neuropsychiatric disorders and motor behavior have not been fully elucidated. Male Wistar rats were bile-duct ligated, and 3 weeks after surgery, treated with lactulose administrated by gavage (1.43 or 3.57 g/kg), once a day for seven days. Plasma levels of ammonia, aspartate aminotransferase, total bilirubin, and creatinine were quantified and histopathological analysis of the livers was performed. Locomotor activity measurements were performed in an open field. The expression of water channel aquaporin-4 was investigated and the analysis of Fos protein immunoreactivity was used to evaluate the pattern of neural activation in brain areas related to motor behavior. Bile-duct ligated rats showed hyperammonemia, loss of liver integrity and function, impaired locomotor activity, reduced aquaporin-4 protein expression, and neuronal hyperactivity. Lactulose treatment was able to reduce ammonia plasma levels, despite not having an effect on biochemical parameters of liver function, such as aspartate aminotransferase activity and total bilirubin levels, or on the cirrhotic hepatic architecture. Lactulose was also able to reduce the locomotor activity impairments and to mitigate or reverse most changes in neuronal activation. Lactulose had no effect on reduced aquaporin-4 protein expression. Our findings confirm the effectiveness of lactulose in reducing hyperammonemia and neuronal hyperactivity in brain areas related to motor behavior, reinforcing the importance of its clinical use in the treatment of the symptoms of cirrhosis-associated encephalopathy.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hiperamonemia/tratamento farmacológico , Lactulose/farmacologia , Fígado/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Amônia/sangue , Animais , Aquaporina 4/metabolismo , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Creatinina/sangue , Modelos Animais de Doenças , Hiperamonemia/metabolismo , Hiperamonemia/patologia , Lactulose/uso terapêutico , Fígado/metabolismo , Fígado/patologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
18.
Neurotoxicology ; 62: 46-55, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28506823

RESUMO

Ammonia is putatively the major toxin associated with hepatic encephalopathy (HE), a neuropsychiatric manifestation that results in cognitive impairment, poor concentration and psychomotor alterations. The hippocampus, a brain region involved in cognitive impairment and depressive behavior, has been studied less than neocortical regions. Herein, we investigated hippocampal astrocyte parameters in a hyperammonemic model without hepatic lesion and in acute hippocampal slices exposed to ammonia. We also measured hippocampal BDNF, a neurotrophin commonly related to synaptic plasticity and cognitive deficit, and peripheral S100B protein, used as a marker for brain damage. Hyperammonemia directly impaired astrocyte function, inducing a decrease in glutamate uptake and in the activity of glutamine synthetase, in turn altering the glutamine-glutamate cycle, glutamatergic neurotransmission and ammonia detoxification itself. Hippocampal BDNF was reduced in hyperammonemic rats via a mechanism that may involve astrocyte production, since the same effect was observed in astrocyte cultures exposed to ammonia. Ammonia induced a significant increase in S100B secretion in cultured astrocytes; however, no significant changes were observed in the serum or in cerebrospinal fluid. Data demonstrating hippocampal vulnerability to ammonia toxicity, particularly due to reduced glutamate uptake activity and BDNF content, contribute to our understanding of the neuropsychiatric alterations in HE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Hiperamonemia/patologia , Amônia/sangue , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hiperamonemia/induzido quimicamente , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Simportadores/metabolismo , Urease/toxicidade
19.
Neurochem Res ; 42(3): 721-736, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27286679

RESUMO

Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate-aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4+ and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl- and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.


Assuntos
Amônia/metabolismo , Encéfalo/patologia , Hiperamonemia/metabolismo , Amônia/toxicidade , Animais , Astrócitos/metabolismo , Astrócitos/patologia , GMP Cíclico/metabolismo , Metabolismo Energético , Glutamina/biossíntese , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Humanos , Hiperamonemia/patologia , Ácido Láctico/metabolismo , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Potássio/metabolismo , Ácido Pirúvico/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
20.
Biomed Pharmacother ; 82: 345-54, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27470372

RESUMO

Chrysin (5,7-dihydroxyflavone) is a major component of some traditional medicinal herbs present in honey, propolis and many plant extracts. The study was aimed to illuminate the effect of chrysin in the pathogenesis of ammonium chloride (NH4Cl) induced hyperammonemic rat model in a dose dependent manner. Rats were injected with NH4Cl (100mg/kg b.w.) by intraperitonially (i.p) thrice a week for 8 consecutive weeks for the induction of experimental hyperammonemia. Hyperammonemic rats were treated with chrysin by orally at a dose of 25, 50 & 100mg/kg b.w. respectively. Protective effect of chrysin against hyperammonemia was evaluated by performing biochemical estimations and morphopathological investigations of hematoxylin and eosin stained sections of liver, brain and kidney tissues. Supplementation of chrysin reinstated the levels of blood ammonia, plasma urea, uric acid, total bilirubin, creatinine, brain glutamate, glutamine, nitric oxide (NO) and the activities of Na(+)/K(+)-ATPase, and liver marker enzymes. On the other hand increased level of plasma urea was observed in chrysin treated rats as compared with hyperammonemic rats. Chrysin administration caused distortion of hepatic, brain and kidney architecture as shown by histological examination. Chrysin at a dose (100mg/kg b.w.) showed an utmost decline in the level of all biochemical estimations. Both biochemical and morphological studies clearly revealed that chrysin protects against cell injury induced by ammonia intoxication in a dose-response manner with respect to endogenous antioxidants and hypoammonemic effects.


Assuntos
Flavonoides/uso terapêutico , Hiperamonemia/tratamento farmacológico , Hiperamonemia/patologia , Amônia/sangue , Animais , Bilirrubina/sangue , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Creatinina/sangue , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Hiperamonemia/sangue , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Modelos Biológicos , Óxido Nítrico/metabolismo , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Ureia/sangue , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA